
Milestone Report - 15618 Spring 2025
Meghna Jain (meghnaj) and Raveena Gupta (raveenag)

TITLE: Parallel Static Time Analysis

INITIAL SCHEDULE: The following is the initial schedule we had planned to follow for our
project.

Week Dates Tasks

0 3/24 - 3/30 ●​ Plan the outline of the project.
●​ Set up repository and gather data

1 3/31 - 4/6 ●​ Get sequential code running
●​ Benchmark the sequential algorithm

2 4/7 - 4/13 ●​ Implement parallel static time analysis using OpenMP -
part 1 from paper

●​ Run experiments to analyse performance
●​ Complete Milestone report

3 4/14 - 4/20 ●​ Implement the timing updates using task graphs -
overcoming synchronization challenges posed by
OpenMP - part 2 from paper

4 4/21 - 4/27 ●​ Stretch goal: Implement the CPU-parallel partitioning
algorithm - algorithm from paper

●​ Realistic goal: Complete the task graph implementation

5 4/28 - 5/2 ●​ Final Poster Session

We have stayed on track with the progress of our project as per the initial schedule. We faced
roadblocks in getting the sequential code to work because we could not find open source
libraries with sequential implementations of the algorithm. Thus, we had to write the sequential
code from scratch and validate it, which took longer than expected.

Currently, we are in the process of adding task loop-based parallelism using OpenMP (part 1
from the paper). As for performance, we are not yet seeing a speedup. While this is consistent
with the findings of the research paper, which states that the synchronization costs of the task
loop-based parallelism are high, we suspect two additional 2 reasons for the lack of speedup in
our implementation:

1.​ We need to optimize the way we are creating tasks and synchronizing between them,
and reduce the overhead of doing so.

2.​ Our input circuits are very small, which means that there aren’t enough independent
tasks for all the threads, leading to low thread utilization and high overhead. Our plan for
this is to generate more circuits using a synthesizer and confirm this.

NEW SCHEDULE:
Based on our current progress, we have prepared a more detailed schedule for the project.

Week Dates Tasks

3.2 4/16 - 4/20 ●​ Raveena: create more test circuits
●​ Meghna: optimize OpenMP implementation, and

complete performance analysis

4.1 4/21 - 4/23 ●​ Raveena: Create the task graph
●​ Meghna: Work on task graph dependencies

4.2 4/24 - 4/27 ●​ Raveena: Parallelize forward pass using the task graph
●​ Meghna: Parallelize backward pass using the task graph

5.1 4/28 - 4/30 ●​ Raveena: Optimize the load balancing of the task graph
●​ Meghna: Optimize the synchronization of the task graph,

find similar path dependencies and bundle them together

5.2 4/30 - 5/2 ●​ Performance analysis, factor analysis
●​ Write final report

COMPLETED: The following paragraphs explain what we have completed for Static Timing
Analysis so far.

So far, the project has implemented a sequential and a naive parallel algorithm for our static
timing analysis tool. Our team has processed the dataset, which is a netlist that represents the
connections between circuit components, their delay, and the data path of signals. We have
parsed the JSON data and extracted the details to observe the individual paths in our circuitry.
Our first step was creating a directed adjacency graph (DAG) to represent connections between
gates. For instance, if Gate 1’s signal went into Gate 2 and Gate 3, we denote a 1 in the
columns place of our adjacency matrix. Then we use topological ordering to ensure that
independent nodes are processed first within a queue, which removes any dependencies in our
path. Using our topological ordering, we traverse through all the paths and accumulate the
delay. This is our “arrival delay”. Following the forward pass, we do a backward pass to identify
the required time for the signal, thus finding potential timing issues and calculating the slack.

To enhance efficiency and time, we implemented OpenMP parallelization. To do this, we used
our topological sort to find paths that have their dependencies finished. (These are nodes with
no in-degrees.) Each node with no dependencies is a task taken by a thread which calculates
the delay for that specific path. We have thus enabled concurrent execution of the forward pass.

DEMO DELIVERABLES:

We will be able to reach our goals as we have a robust sequential code and we’re working on
parallelizing our static timing tool. Our “nice to haves” is having our last algorithm - Task Graph
Partition, which is a graph partitioning scheme by making smaller clusters of graphs in adjacent
levels. This may still remain a stretch goal, however, we should be able to calculate speedup
and have task graphs parallelism done by our final due date.

We will create graphs to visualize the performance of all 3 algorithms. We will include a factor
analysis which will explain how each of the algorithms responds to different inputs (large vs
small circuit, balanced vs unbalanced circuit, etc.).

CHALLENGES:

Our biggest unknown is that our parallel code is taking longer than our sequential code, this
needs to be observed more as it can be due to the overhead/critical sections/small problem
size.

