Final Report - 15618 Spring 2025
Meghna Jain (meghnaj) and Raveena Gupta (raveenag)

TITLE: Parallel Static Time Analysis
SUMMARY:

Our goal for this project was to parallelize a Static TIming Analysis tool which checks if a circuit
has any setup or hold time violations. We have parallelized the algorithm on multi-core GHC
machines using OpenMP. In this report, we will show multiple algorithms that we implemented
from a research paper. The first algorithm we explored is using task loop parallelism by
pipelining our algorithm. The next algorithm from the paper explores parallelism by creating a
task graph for the circuit. We demonstrate that our results align with those from the paper, in
that we see greater speedup from the task graph implementation.

BACKGROUND:

STA is a verification tool that allows designers to verify that their signals propagate through the
circuit fast enough to meet setup constraints. It ensures that the signals within the circuit comply
with the clock's frequency, and that the clock is able to capture the signals accurately. In our
design, we used a “pessimistic approach” where we assumed the worst case to verify
correctness of the design. The main goal of a STA is to analyze the propagation delays - arrival
time and required time. The forward pass is the arrival time which is when the signal reaches a
certain point in the circuit. The backward pass is the required time that must be adhered to
avoid timing failures. The forward pass consists of three stages that must occur sequentially for
a component in a circuit: RC, slew, and arrival time calculation. The arrival time depends on the
RC and slew delay which are calculated from a component's neighbors. The slew depends on
the RC values, thus creating a chain of dependent functions. The backward pass is calculated
from the circuit's outputs and goes inwards, keeping into account the time needed for the clock
to accurately capture the signal. We use the equation required time = clock period - setup time
and propagate it backwards to see if the signal reaches before the clock. Since we’re using a
pessimistic approach, we take the highest delay for each calculation. We calculate the slack =
required time - arrival time with a negative slack indicating timing violations. Usually, STA is a
very sequential algorithm due to its dependence on sequential functions and paths. However, if
the mode of parallelism is captured carefully, we can see significant parallelism.

Key data structures:

1. ASIC object
a. Inputs and outputs of the circuit
b. Stores a list of all the cells in the circuit

2. Adjacency matrix
a. Represents the forward connectivity in the graph edges.
b. Purpose: Forward propagation of arrival time

3. Reverse Adjacency matrix

1/0:

a. Represents the backward connectivity in the graph edges.
b. Purpose: backward propagation of required arrival time

4. Level list

a. 2-dimensional list of all the nodes in each level
b. Purpose: Parallelism strategy for task loop parallelism, since all the nodes in a
given level are independent of each other and the tasks can be run concurrently.

5. Task Graph

a. Maps nodes to tasks

b. In atask graph, each node represents timing propagation tasks and each edge is
their dependency. Each node in the graph is either slew, propagation, delay, or
an arrival time task while an edge represents a functional dependency (A arrival
must happen before B arrival).

Inputs: All the implementations we have explored have the same inputs and outputs,
while they may transform the data based on the implementation.
a. ASIC object which describes the inputs and outputs of the circuit, and all the
delays
b. Adjacency matrix/DAG which represents the connections between the circuit
elements.
Outputs: The timing for every node. This includes the arrival time, required arrival time,
slack, and thus prints if there is a timing violation for each node in the circuit. Below is a
sample timing violation for a small circuit.
Node x (ID: 4) | Slack: 27.45 | Timing OK!
Node abcB80%0%x (ID: 8) | Slack: 29.25 | Timing OK!
Node a_ (ID: &) | Slack: 31 | Timing OK!
| slack: 32 | Timing OK!
| Slack: 32 | Timing OK!

6)

Node b_ (ID: 7) | Slack: 31 | Timing OK!
)
)

Node a (ID: 2
Node b (ID: 3

Our STA Flow:

The flow for our circuit analysis tool starts from verilog design, which describes the hardware
behavior. We used synthesis tools like yosys, where we synthesized the circuit into a json netlist
where we created a graph data structure of the gates, resistors, capacitors used. We
additionally stored the delay values for each component. For instance, an “AND” gate takes
approximately 12 nanoseconds to propagate the signal. Below is a diagram of a simple circuit
and its gate components.

| N \» %}j

—

Additionally, each gate corresponds to a rc value and a slew value. Since wires are not perfect,
they have an additional time overhead that our tool tried to encompass. The rc delay is
calculated by multiplying the resistance and the neighboring capacitance. The slew is the time it

takes for a signal to transition from low to high or high to low. This is dependent on the
maximum rc delay value.

1e6 3855730 Execution Times for Different Stages
4.0 4
3.5
3.01
@ 2.5
2
@ 2.0 1702872
g
515
1.04
0.5
7595 9244 47772
0.0 T T T
R = £ & 2
q\‘b \\Yb of) bq’b gi«o
: hd S $ S
@‘9 QC .§> @b &
R & B J &
.e":"g’ 6 Lo
(e & o
NG &
kS &
N A
0\003 @@
,&J
«F 5

Our basic algorithm is divided into different stages. We first parsed the JSON and created a cell
cell map that has all the components (AND gate/OR gate) and its inputs and outputs. From this,
we created and directed acyclic graph list that has an edge between all the inputs and outputs.
We do not consider the time to read the inputs since that is a required cost, and cannot be

parallelized. Thus, as seen above, the two main functions that we focused on optimizing are the
forward and backward pass.

Dependencies:
There are two key dependencies in the static timing analysis algorithm:

1.

Function-level dependencies

Within the forward propagation for one node, the operations being performed on the
node are dependent on previous operations. This pessimistic approach ensures that
every possible path into a gate is accounted for accurately.

The RC value of a node is used to calculate the Slew of a node.
Both the RC values and the Slew values for a node are used to calculate the arrival time
for a node. They must be done in order.

Path-level dependencies

In the forward and backward pass, the nodes in level °| + 1° are dependent on the nodes
in level 'I'. This dependency is captured in the DAG and adjacency matrix, and means
that we need to ensure that the nodes in each level are being executed sequentially.

Additionally, the backward pass for a node can only begin after the forward pass for that
node has completed, since the required arrival time and slack is based on the final
arrival time at the outputs.

Thus, there are a lot of dependencies that need to be resolved in STA. However, there is
definitely room for parallelism, which we explore by pipelining the forward and backward passes
separately (task loop parallelism), and creating a task graph.

APPROACH:

As mentioned earlier, we explored multiple algorithms in our final project. We started off with
implementing a sequential version from scratch and then added modifications for the parallel
algorithms. We have targeted the GHC multicore machines (8 cores, 1 thread/core).

1.

Parsing Inputs

This part is completely sequential. We parse through a JSON file containing details
about the circuit, and create an ASIC object that stores these details as described
earlier. We also create a cell map which helps us identify and keep track of the nodes.

Sequential Algorithm

This algorithm is broken into two distinct parts: forward propagation and backward
propagation. In the forward pass we assign “inDegrees” to each of the nodes, which
represents how many inputs a node has. We enqueue the nodes that have an “inDegree
of 0, and then calculate the RC, Slew and arrival time, by taking the maximum value
computed thus far, for the nodes in the queue. Once we complete a pass over a node,
we decrement the inDegree of its neighbors, nodes which depend on it. Again, once the

inDegree of a node becomes 0, it is added to the queue and processed. The nodes are
added to a “sorted” vector as they are processed and this vector is the final output of the
forward pass.

The “sorted” vector is the main input to the backward pass. In this part of, we first
reverse the adjacency matrix so that we can move backwards in the circuit. Once that is
done, we go backwards from the sorted vector through the circuit and calculate the
required arrival time by taking the minimum required arrival time, following the
pessimistic approach described earlier.

There are multiple shared data structures here used for bookkeeping such as
arrival_time[nodes], required_arrival_time[nodes], slack[nodes].

Node Parallelism

Before we started implementing the algorithms described in the paper, we tried a naive
version of parallelism. This implementation involved using the same sequential
implementation without making major modifications to the data structures.

The main modification done for this implementation was to replace a queue with a vector
so that threads can be assigned to different elements within the vector.

Forward pass:

Just as earlier, we would add all the nodes with an inDegree of 0 to the “queue” which is
actually a vector. We used a “parallel for” pragma to divide up the work among the
threads. Since the queue at this point only contains the independent, these tasks can be
run concurrently. Here, the function-level dependencies are not violated because the
entire iteration is done sequentially. One major consideration was that multiple threads
should not be able to update the inDegree of their common neighbor at the same time,
thus this update was locked in a critical section. Once a node reached inDegree 0, we
would update the global queue before the next iteration to find all the nodes which can
be run independently.

Backward pass:

Similar to the forward pass, we would start from the end of the “sorted” vector and
parallelize the loop that runs through the independent nodes level by level, and
propagate backwards.

In both passes, we had to ensure that the updates to the global bookkeeping data
structures like arrival_time, etc. are enclosed in a critical section.

Task Loop Parallelism

This is the first algorithm we worked on from the paper. In this algorithm, we still keep the
forward and backward passes of the algorithm sequential. Each of the passes now has a
pipeline of tasks with synchronizations as required.

Algorithm 1: update_timing_using_loop_parallelism()

1 B « Level list of the timer;

2 if B.num_pins = 0 then

3 | return;

1 update_level(B);

5 lpin + B.min_nonempty_level;

6 lmax < B.max_nonempty_level;

7 # Parallel_Region { Barrier Barrier Barrier Barrier Barrier

s # Master Thread_do for [= [,;;p to la + 4 do rae Wl Wl Wl Wais |
g # spawn_task propagate_rc(l); Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 | Thread ID
w | #spawn_task propagate_slew(l - 1); RCP, | | RCPis| | RCPu| | RCPLs| | RCPLy| | RCPLs | Thread 1
1 # spawn_task propagate_delay(l - 1); My My K
wad 2

12 # spawn_task propagate_arrivel time(/ — 2); BILA, B N L N SLP:s N SLPy. | Thread 2
13 | # spawn_task propagate_jump_point(/ - 3); DLP; DLP,, | | DLP.,| | DLP,;| | DLP, | Thread 3
14 # spawn_task propagate_cppr_credit(l — 4); R ™ K

. N ATP; ATP ATPsz ATPy,; | Thread 4
15 # synchronize_tasks; Nl N N
6 }; IMP; IMPy. IMPy,> | Thread 5

. ™y "y
17 # Parallel Region { CRP, CRP..; | Thread 6
18 # Master_Thread_do for [= [, to s

4 [} [} [} A A

B.min_non_empty level do ¥ [¥] [] ¥ > Time
o S Parallel Parallel Parallel Parallel Parallel Parallel
19 # spawn_task propagate fanin(l);
20 # spawn_task propagate_required_arrival_time(l); i L. .
s | #synchronize_tasks; Figure 1: Loop-based parallel timing propagation. Each level
2) applies a parallel_for to update timing from the fanin of
23 remove all pins from the level list B; each node [42].

These images are taken from the paper. They describe the task loop parallelism that we
implemented.

This implementation required us to switch from a “sorted” vector to a level list. The
creation of the level list does not compute the arrival time for any of the nodes, instead it
just ensures that we have a list of all the nodes at each level of the circuit. As we showed
earlier, all the nodes at a particular level can be computed concurrently, so the level list
helps us with parallelizing the forward and backward passes of STA.

For the circuit shown above in our report, we get the following level list:
Level O: size: 2: 2 3

Level 1: size: 2: 6 7

Level 2: size: 1: B

Level 3: size: 1: 4 \yhere each number in the list represents a circuit element.

In this implementation, we have one master thread that spawns tasks for each level of
the circuit. The key thing to note here is the level for which the tasks are being created -
the tasks operations with dependencies are launched in later iterations of the loop, thus
ensuring that the dependencies are not violated. Also, another thing to note is that for
our implementation, we only used the RC, Slew, and arrival time computations, and did
not include the jump point, and CPPR functions due to our dataset having limited
complexity. We also have barriers implemented using “taskwait” between iterations of
the loop. This ensures that all the tasks launched in a certain iteration complete before
new tasks are launched. Additionally, the barriers can increase idle time as threads wait

on the slowest thread in a level to finish work. Since some nodes can take longer, we
don’t have good load balancing.

For instance: When we start at level 0, we only create a task for RC for the nodes in
level 0. In the next iteration, we create RC tasks for all the nodes in level 1 and also
create Slew tasks for level 0. When we are at level 2, we launch RC tasks for level 2
nodes, Slew tasks for level 1 nodes, and ArrivalTime tasks for nodes in level 0, and so
on.

Task Graph Parallelism - Forward Propagation
Introduction

As seen in our previous iterations, we ran into the issue of synchronization barriers. The
synchronization barrier on each level caused overhead as all the threads had to wait on
each other to finish. This caused significant delays and idle times as workload wasn’t
balanced and certain nodes took faster. Thus, our next stage was to eliminate barriers by
employing task graphs.

function topological_TaskGraph(dag, cell_map)

Initialize iInDegree map for each task to 0
Initialize result list (empty)
Initialize queue q (empty)

Step 1: Calculate in-degrees
for each task in taskGraph:
Calculate the inDegree[task]

Step 2: Enqueue tasks with in-degree 0
for each task in inDegree:
if inDegree(task] == 0:
add task to queue g

Step 3: Process queue in parallel
while q is not empty
parallel for each task in q_copy
dag processQueue(task, dag, cell_map)
for each neighbor of task in taskGraph
atomically decrement inDegree[neighbor]
if inDegree[neighbor] == 0:
add neighbor to local next_qg list

Merge all local next_q lists into global next g

q=next_q

return result

In this algorithm, we employed more parallelism by creating a taskgraph to allow more
tasks to run in parallel. The task graph replaces the barriers between levels by using
“‘edges” to represent dependencies.

This mode of parallelism allows for threads to continuously have “work” and creates a
larger task pool. In our previous algorithm, we had to finish tasks spawned in level 1
before moving on to level 2. We had a set of barriers between components which
caused synchronization stalls for threads. Now, we no longer synchronize by level, but
by tasks and their edges. If a component is on a different level, it can still be processed
with other components as long as its dependencies are met. Additionally, we saw better
performance with a static assignment because our queue had enough tasks to statically
assign without incurring the overhead of dynamic scheduling. Since there are more
tasks, we have better load balancing because the threads don’t stall and are assignment
more concurrent tasks.

In order to support a task graph, we changed the sequential algorithm to support a
processing unit that takes a task and processes it accordingly, assuming that its
dependencies have been met.

Dependency:

a. Dependency of order: We still have task and function dependencies between
Task A and Task B. The figure below shows that the functions and nodes must be
processed in a specific order for us to get the accurate values.

MNode_1 Slew MNode_1 RC Mode_1 Delay

Node_2 Slew
MNode_2 Slew MNode_2 Delay

b. Contention and Storage: The algorithm employs a global vector to store the
arrival values, causing contention if there are multiple threads processing the
same task. Additionally, our task graph is extremely large and can cause cache
evictions and false sharing.

Node_2 RC Node_2 Delay

6. Task Graph with Backward Propagation

Introduction:

The algorithm before uses task graphs for forward propagation, but still has an “implicit”
barrier between forward and backward pass. In the next algorithm, we further parallelize
our algorithm by making backward more concurrent. In this algorithm, we run both
forward and backward together.

Algorithmic Breakdown:

Function createTaskGraph(asic).
For each node and its neighbors in adjList
Define rc, slew, and arrival tasks for the node

Add edge: rc — slew
Add edge: slew — arrival
Add edge: arrival — neighbor's rc

For each output node in asic outputs:
Define arrival and be_required tasks for the output

Add edge: output arrival — output be_required
For each fanin of current node (from reverseAdjList)

If fannin not visited:
Add edge: current be_required - fannin be_required

This algorithm focuses on the fact that once a path has been fully traversed, we can start
the backward propagation.

In the graph, we created the task “be_required” which signifies that we can calculate the
backward pass for the node. In order to make this change, | added a backward
processing unit in the sequential code.

The mode of parallelism changed from having a barrier between forward and backward
to having edges that represent dependency. When we hit the output of a path, we can go
backwards and calculate the required time. This eliminates the need for a barrier
between the white (forward) and black (backward) nodes in the figure above, as we can
do both computations in parallel. The figure below shows the new added tasks.

MNode_1 Slew MNode_1 RC
Node_2 RC Node_2 Delay
MNode_2 Slew MNode_2 RC

Dependency:

Backward Propagation: The dependencies remain the same as forward propagation
discussed in the previous algorithm. The backward propagation tasks are still dependent
on the forward propagation. This sequential dependency showcases “Amdahl’s law” and
brings down our speedup as we still need to wait for the edges to be complete.

MNode_1 Delay

Node_2 Slew

Node_2 Delay

DATASET:

We have a number of circuits which we use to test the performance of our implementations.

Circuit Number of nodes [Features

simple 6| Small circuit, mainly for debugging

adder 28| Adder circuit

longpath 24(One long critical path with mainly one node per level
balanced 24(Size of level changes on log scale

mult 94| Relatively larger circuit

bigadder 191|Larger circuit

bigcircuit 11728 Very big circuit

With some preliminary testing we realized that most of our circuits were very small, and the
overhead of parallelism outweighed its benefits. Thus we created the “bigcircuit”, which is the
largest circuit in our dataset. This is important because not only does it have a lot of levels, it
also has a lot of nodes in each of them. Thus, whether we use take loop parallelism where we
spawn threads by the level, or task graph parallelism where we create tasks as nodes, we can
benefit from having more independent tasks that can run concurrently, thus improving
performance.

RESULTS:

1. Node Parallelism:
a. Speedup:

Speedup vs Threads per Circuit

1 —e— simple
adder

—&— longpath

—e— balanced

—— nult

4 4 —®— bigadder

bigcircuit

Threads

The graph above depicts the speedup of the node parallelism algorithm with respect to the
number of threads being used across all the circuits. The baseline used here is setting the
number of threads to 1. This configuration was chosen because of the modification we had to
make from the very first sequential algorithm, as discussed in the previous section.

One of the main takeaways from this implementation, which actually motivated us to create a
new circuit, was that the speedup is very low, and even below 1 for really small circuits. This
takeaway is quite intuitive because in most of the circuits we looked at, we had less than 100
nodes. Even though we have more threads than nodes, we have a lot of dependencies in the
algorithm itself which limit our speedup. This is quite clear from the graph because we can see
that as the number of nodes increases, even the “slowdown” of the smaller circuits decreases.

As we add more threads, we can see that the performance is decreasing across all the circuits,
except for the “bigcircuit”. This general trend is attributed to the fact that most circuits have
almost a source and sink pattern, where the number of nodes falters closer to the inputs and
outputs as compared to the middle section of the circuit. This means that in all these “levels” of
the circuits, there may be too few elements to be processed in parallel, which then leads to low
resource utilization and poor performance. Also, using more threads than available on the
machine leads to a lot of context switches and overhead, which is reflected in the graph. In the
bigcircuit, however, due to the sheer number of nodes which can be run concurrently, we can
see a significant speedup from 2 to 8 threads.

The node parallelism algorithm is only parallelizing one level of the DAG at a time. Thus, if there
are fewer than “numThreads” nodes in the level, many of the threads will be idle and not
improve our performance. Moreover, after every iteration, we update the neighbors of the
nodes, which requires atomic updates. Finally, after all the threads are done with an
iteration/node of a given level, we can move onto the next level. Now, we have to accumulate all
the other nodes whose inDegree has reached 0. All the threads are blocked at this step
because the new level cannot start execution until we have all the nodes and are sure about all
the dependencies being resolved.

Despite all these dependencies, we can see that this algorithm can perform well on large
circuits when all the cores are being fully utilized, with a speedup of almost 5x on the bigcircuit.

2. Task Loop Parallelism:
a. Speedup:

The graphs below show the speedup of the task loop parallel algorithm over the number
of threads for different circuits for the forward and backward propagation segments of the
algorithm, which is the most intensive segment of the STA algorithm. The baseline used here is
setting the number of threads to 1. This configuration was chosen because of the modification
we had to make from the node parallelism algorithm.

i. Forward Propagation

Speedup vs Threads per Circuit - Forward Propagation

2.0+

157 —e— simple
adder
—8— longpath
—e— balanced
—e— mult
—e— bigadder
bigcircuit

Speedup

1.0 1

0.5 §

\

2 4 8 16
Threads

0.0 4

Here, we can see that there is only a speedup for the large circuit with over 10,000 elements.
For all the other smaller circuits, there is actually a slowdown. However, we can see here as well
that the larger circuits have better performance than the smaller ones, even in terms of
slowdown.

In this algorithm, the main limitation to speedup was the heavy use of barriers between tasks of
different levels. Moreover, we are incurring the cost of creating so many tasks, since we create 3
tasks (RC, Slew, Arrival time) for each node in the graph, and scheduling them in such a way
not to violate the dependencies. We are also updating the globally shared data structures
storing the RC, Slew and arrival time values for the nodes in a critical section in each task. All of
these factors contribute to the overhead of this algorithm which then results in very poor
performance. This result is aligned with the results from the paper, which motivated the
implementation of the task graph implementation.

Just as shown in the previous implementation, adding more threads (especially 16 threads)
decreases the performance of the algorithm due to the poor load balancing and low resource
utilization. Again, the bigcircuit would have more tasks being launched which can be picked up
by the threads.

Our maximum speedup for the task loop parallelism is about 3.6x with using 8 threads on the
bigcircuit.

ii. Backward Propagation

Speedup vs Threads per Circuit - Backward Propagation

1.0+

0.8 +

0.4 +

—8— simple
adder
0.2 4 —e— longpath
—e— balanced
—8— mult
—&— bigadder
bigcircuit

T T T T
2 4 8 16
Threads

In this segment, the main limitation to speedup was the heavy use of barriers between tasks of
different levels. Moreover, we are incurring the cost of creating so many tasks, since we create 2
tasks (Fanin, and required arrival time) for each node in the graph, and scheduling them in such
a way not to violate the dependencies.

The backward pass shows a decline in performance as we increase the number of threads for
all the circuits. The backward pass is also by nature less parallelizable. This is because this
segment of the algorithm has to reverse the adjacency matrix before the propagation can start.
This is done sequentially, and is a required cost for the back propagation because this has to be
done after the forward propagation for an end-to-end solution. This also follows a similar
pipeline pattern as the forward propagation as shown in the pseudocode earlier, which means
that there are a lot of dependencies here as well.

Again, adding more threads (until 16) is useful for big circuits because there are more nodes
that can be run concurrently. Here, we can see that the mult and bigadder circuits saw a small
spike in speedup - which is aligned with the general trend we have seen. The smaller circuits
end up with lower resource utilization and poor performance.

3. Task Graph Parallelism:

a. Speedup for forward pass

Speedup vs Threads per Circuit

—a— simple
adder

5 —e— longpath

—&— balanced

—&— mult

—e— bigadder
bigcircuit

Speedup (normalized to 1-thread)

1 2 4 8 16
Threads

The graph above depicts the speedup of using the taskgraph algorithm for forward pass. As
evident, this gave us the most speedup because we no longer have any synchronization stalls
or barriers between levels. By making the mode of parallelism “tasks”, we increase the task pool
and replace barriers with edges.

With 8 threads, we reach a speedup of around 5.2. This is expected because we have better
parallelization: less barriers, less synchronization stalls, and more tasks working concurrently.
This in turn gives us better load balancing as we can always have tasks on the queue. As we
add more threads, we are able to execute more tasks in the task queue. The speedup was
steepest between 2 and 4 and dwindles between 8 and 16. At 16, due to context switching and
our machine only supporting 8 threads, we see less speedup. It's also possible that the cost of
dispatching and synchronizing eats at our speedup. Additionally, we get sublinear performance.
This is because of Amdahl’s law. The “serial” work, the edges, cannot be parallelized. The task
and node dependency dominate how parallel our algorithm can be. With large circuits
especially, there are multiple critical paths. (This is a common design occurrence in industry).
These critical paths significantly weigh us down as they need to be run sequentially to get
accurate results. Also, we have critical sections between global variables which can cause stalls
and cause threads to wait.

The smaller circuits showed less speedup because the overhead of running threads in parallel
outweigh the benefits for circuits with fewer nodes. The other netlist that showed speedup is big
adder which is the second largest circuit, proving that task graph parallelism is only efficient
when our problem size is big.

b. Speedup including backpropagation:

Speedup vs Threads for Task Graph with backward Propagation

—8— bigcircuit
4.5

4.0 1

3.5 1

3.0 1

2.54

Speedup (baseline = 1 thread)

2.01

1.5+

1.0 4

1 2 4 8 16
Threads

In this algorithm, we created a taskgraph with both forward and backward propagation. This
allows for more concurrency and a larger task pool. As evident above, our speedup is slightly
slower than the forward task graph algorithm. This makes sense because we’'re combining back
propagation and its dependencies in our taskgraph. Required time can only be calculated once
the arrival time is calculated, and thus certain tasks stay in our dependency matrix longer. There
are more sequential dependencies, limiting our parallelism. Additionally, our task graph is
bigger. If our threads are constantly grabbing values, it can cause cache evictions or false
sharing between threads. The contention of appending values to global structures also causes
stalls for threads processing the same tasks. These dependencies weigh down our speedup for
this algorithm.

166 Execution Time Components vs Number of Threads
1089488

I Task Graph Time

10 3 Forward+Backward Time

0.8

641724
0.6

1ime {us)

431338
0.4 4

0.2 4

45459 45704 45644

0.0 -

2 4 8
Threads

Another thing to consider is the time to build the taskgraph. This is the “extra” overhead of
making the process more parallelizable. The task graph construction is a one-time cost and
stays consistent with different number of threads. Even with the creation of a task graph, we still
see great speedup with 8 threads - showcasing that changing the mode of parallelism can help
achieve significant speedup.

OVERALL RESULTS:

In this section we will compare the three major implementations for Parallel Static Timing
Analysis.

a. Speedup
Speedup Comparison for Bigcircuit (Three Algorithms)

16 4 —®— Task Graph A
Task Loop P

—8— Node Parallelism -

14 4 ——- Ideal (Linear Speedup) -

12 4

10 4

1 2 4 8 16
Threads
This is a speedup graph which compares the performance of the forward propagation
of the three major algorithms we have implemented using the bigcircuit. The speedup for
each of the implementations was calculated by setting the number of threads to 1, due to
the difference in data layout. The dashed line shows the linear speedup, which is ideally
what we want.

We can see that out of all the algorithms, the task graph implementation performs the
best, while the task loop parallelism has the lowest speedup. The fact that none of the

three implementations reach linear speedup shows that there are a lot of dependencies,
which make parallelizing this algorithm a difficult task.

The benefit of the task graph is that we are not using a barrier at each level of the circuit.
This allows the nodes along a path to continue processing if their inputs have already
been processed, thus lowering the synchronization time and idle time for threads. Both
other implementations use barriers between two consecutive levels of the circuit.

The node parallelism implementation ends up performing better than the task loop
implementation. Even though there is a barrier between each level, the node parallelism
uses static scheduling when it assigns threads to nodes within a queue to process. While
static scheduling may sometimes result in poor load balancing, here we are assured that
each of the nodes are not waiting on any other inputs and can start being processed,
which allows us to benefit from the lower overhead of static scheduling.

The task loop implementation incurs a lot of overhead due to creating 3 tasks for each
node, dynamically assigning tasks to threads, scheduling decisions, and barriers at
every level.

vga_led (139.5K gates) netcard (1.5M gates)
8 —a— Task parallelism 18 H —a— Task parallelism
—_ ‘ = Loop parallelism —_ W = Loop parallelism
= \ =)
= 4 =
=] 6 = \
E W E 14
= =
L7 W [S -— 2
=) E 12 = "
= 4 =
=} WY =
=] \ = 10
sl | - - L -
| S e . B
2 8
0 10 20 3 40 0 10 20 30 40
number of cores number of cores
leon2 (1.6M gates) leon3mp (1.2M gates)
L] —a— Task parallelism £ L] —a— Task parallelism
—_ 50 . —=— Loop parallelism —_ -, —=— Loop parallelism
7 |\ 0 W
U VY U VY
e ' = 4\
=) = 30
= g
E w £
E =) E 25 " "
=)] = - - .
- L= ; n —
E . £
= . \ = \
- 30 "___7- - 20 .
T " T — a8
0 10 20 30 4an 0 10 20 30 4n
number of cores number of cores

Above, is an image from the paper we are using to implement the algorithms. The
graphs depict the runtime of the implementations.

We can see that for loop parallelism, the runtime decreases by less than half. This
results in a speedup of about 1.5x to 2.5x, which is consistent with the speedup we saw

for the bigcircuit. For the task graph implementation, the runtimes are lowered by about
half. This results in a speedup of about 2x.

Thus, we can conclude that the results from our implementation of task graph parallelism
and task loop parallelism are consistent with the results from the paper.

b. Cache misses

106 Cache Misses Comparison for Bigcircuit

—8— Node Parallelism
Task Loop
—8— Task Graph

8.0+

7.5

7.0

Cache Misses

6.5 1

6.0 ./,0—4.\'—,/

Threads

For our algorithms, we documented the cache misses per thread for our three algorithms. Node
parallelism has cache misses that stay fairly stable (around 5.8 M). This suggests that node
parallelism has good cache locality. This means that threads work on nearby data without
heavily disrupting caches. This makes sense as node parallelism maps a thread to a node,
keeping its neighbors and local data in the cache. This is different from task loop parallelism
where a thread maps to different nodes within a level, causing cache evictions and managing
more data which causes the task loop to have more misses. The task graph has the highest
cache misses which makes sense as the task graph is extremely big and cannot fit on the
cache, causing frequent evictions and misses. Thus, the general trend is that node parallelism is
the best in terms of cache efficiency and task graph is the worst because moving graphs to and
from the cache has overhead.

REFERENCES:

1. Tsung-Wei Huang, Boyang Zhang, Dian-Lun Lin, and Cheng-Hsiang Chiu. 2024.
Parallel and Heterogeneous Timing Analysis: Partition, Algorithm, and System. In
Proceedings of the 2024 International Symposium on Physical Design (ISPD '24).
Association for Computing Machinery, New York, NY, USA, 51-59.
https://doi.org/10.1145/3626184.3635278

CONTRIBUTIONS:
Distribution of work:
e Creating circuits and parsing inputs

o Raveena
Sequential algorithm:

o Forward pass: Raveena

o Backward pass: Meghna
Node parallelism:

o Naive implementation: Meghna
Task Loop parallelism

o Forward propagation: Meghna

o Backward propagation: Raveena
Task Graph parallelism

o Forward propagation: Meghna

o Backward propagation: Raveena
Distribution of credit: 50-50

https://doi.org/10.1145/3626184.3635278

